Mesoscopic Physics and Optoelectronics Group

Research
Current position: Home >> Research

Research Overview


The research in our group focuses on mesoscopic physics and optoelectronics especially in the platforms of optical waveguides and microcavities. Ultrahigh-Q optical microcavities have become intriguing testbeds for light-matter interactions owing to their strong confinement of light field. The miniaturized nano-/micro-fibers are demonstrated with many intriguing properties, such as the strong light field confinement, large surface evanescent fields, tunable dispersion and mechanical configurability. We hope to explore the fundamental light-matter interactions at the nano-/micro-scale, and realize novel optical and optoelectronic applications.

 

Microcavity optics

 

Thanks to the strongly enhanced light-matter interactions, ultrahigh-Q microcavities have shown great potentials in ultrasensitive sensors, low-threshold microlasers, nonlinear optics and quantum optics. The current projects include:

1.  Nonlinear optics

2.  Optical sensing and measurement                             

3.  Transformation cavities


References:

1.   Microcavity nonlinear optics with an organically functionalized surface, Jin-hui Chen#, Xiaoqin Shen#, Shui-Jing Tang, Qi-Tao Cao, Qihuang Gong, and Yun-Feng Xiao, Phys. Rev. Lett., 123, 173902 (2019).

2. Conformal optical black hole for cavity, Qingtao Ba, Yangyang Zhou, Jue Li, Wen Xiao, Longfang Ye, Yineng Liu, Jin-hui Chen*, Huanyang Chen*, eLight, 2, 19 (2022). 

3. Operando monitoring of transition dynamics in responsive polymer using optofluidic microcavities, Daquan Yang#, Jin-hui Chen#, Qi-Tao Cao#, Bing Duan, Hao-Jing Chen, Xiao-Chong Yu, and Yun-Feng Xiao, Light Sci. Appl., 10, 128 (2021).

4. Electron microscopy probing electron-photon interactions in SiC nanowires with ultra-wide energy and momentum match, Jinlong Du#, Jin-hui Chen#, Yuehui Li#, Ruochen Shi, Mei Wu, Yun-Feng Xiao, Peng Gao,  Nano Lett., 22, 6207 (2022).

5. Anomalous optical whispering-gallery mode induced by rotational symmetry breaking, Jin-hui Chen#, Wen Xiao#, Sheng-ke Zhu, Pei-Ji Zhang, Qi-Tao Cao, Chao-fan Shen, Cheng-Wei Qiu*, Huanyang Chen, and Yun-Feng Xiao,  Phys. Rev. A 109, 013508 (2024).


 

Waveguide optics


The fast development of optical communications have been built on the ultralow-loss optical fiber network. While the optical fibers simply transmit the light signals in the optical communications system, they have also found extended applications in various fields, such as the optical imaging, distributed sensing, fiber lasers and nonlinear optics. The current projects include:

1.  Optical fiber-integrated optoelectronic devices

2.  Nonlinear optics

3.  Optical sensors


References:

1. Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology, Jin-hui Chen, Yi-feng Xiong, Fei Xu, and Yan-qing Lu,  Light Sci. Appl., 10, 78 (2021).

2.  Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structure, Jin-hui Chen, Jun Tan, Guang-xing Wu, Xue-jin Zhang, Fei Xu and Yan-qing Lu, Light Sci. Appl., 8, 8 (2019).

3.  An all-optical modulator based on a stereo graphene-microfiber structure,  Jin-hui Chen, Bi-cai Zheng, Guang-hao Shao, Shi-jun Ge, Fei Xu, and Yan-qing Lu, Light Sci. Appl., 4, e360 (2015). 

4.  High-sensitivity optical-fiber-compatible photodetector with an integrated CsPbBr3–graphene hybrid structure, Jin-hui Chen, Qiang Jing, Fei Xu, Zhen-da Lu, and Yan-qing Lu, Optica, 4, 835-838 (2017).

5.  Interlayer confined capacitive response via solvated cointercalation in graphite layers, Xiaojuan Huang, Yi-fan Cheng, Huan Liu, Xiaoqing Chang, Guiyang Gao, Zerui Yan, Qian-qian Wu, Yunpeng Zhong, Gen Chen, Zhangquan Peng, Dong-Liang Peng, Jin-hui Chen*, Guiming Zhong*, Qiulong Wei*, ACS Nano, 19, 7168 (2025).







Disodered photonics


Disordered structures are ubiquitous in our daily life. Compared with ordered structures, there are plenty of room for studying light-matter interactions with disordered structures, which contains abundant degrees of freedom. In fundamental optical physics, the Anderson localizations due to strong disorder, and branched flow induced by weakly correlated disorder; for practical applications, disordered photonics empower the efficient solar cells, high-fidelity encryption, in-depth imaging, et. The current projects include:

1.  Statistical light transport e.g. branched flow, diffusion

2.  Multidimensional light field detections

3.  Wavefront shaping


References:


1.  Electrical tuning of branched flow of light, Shan-shan# Chang, Ke-Hui Wu#, Si-jia Liu, Zhi-Kang Lin, Jin-bing Wu, Shi-jun Ge, Lu-Jian Chen, Peng Chen, Wei Hu, Yadong Xu, Huanyang Chen, Dahai He, Da-Quan Yang, Jian-Hua Jiang*, Yan-qing Lu*, Jin-hui Chen*, Nat. Commun., 15, 197 (2024).

2. Harnessing disordered photonics via multi-task learning towards intelligent four-dimensional light field sensors, Sheng-ke Zhu#, Ze-huan Zheng#, Weijia Meng, Shan-shan Chang, Yingling Tan, Lu-Jian Chen*, Xinyuan Fang*, Min Gu & Jin-hui Chen*,  PhotoniX, 4, 26 (2023).

3.  Dynamic transition from branched flow of light to beam steering in disordered nematic liquid crystal, Xiao Yu#, Shan-shan Chang#, Zi-Ye Wang, Jiao Liu, Xing-Zhou Tang, Jin-hui Chen*, Bing-Xiang Li* and Yan-Qing Lu*,  Laser Photonics Rev., 18, 2400366 (2024).

4. On-demand tailoring of optical branched flow via soft matter domain engineering, Xiao Yu, Xin-Yu Fang, Jing-Qi Tian, Xing-Zhou Tang, Zi-Ye Wang, Jin-Hui Chen*, Yan-Qing Lu* and Bing-Xiang Li*,  Laser Photon. Rev., 19, 2401717 (2025).

5. Intelligent optical fiber-integrated near-infrared polarimeter based on upconversion nanoparticles, Chao-fan Shen, Tuqiang Pan, Yinghao Wei, Sheng-ke Zhu, Yi Xu*, Ai-Hua Li*, Huanyang Chen, Jin-hui Chen*,  Adv. Opt. Mater., 11, 2301259 (2023).

6. Integrated light-field sensing: From nanophotonic architectures to computational perception, Ze-huan Zheng, Ying Chen, Song Luo, Zhanghai Chen*, Jin-hui Chen*,  Appl. Phys. Rev., 13, 011304 (2026).

7. Towards integrated mode-division demultiplexing spectrometer by deep learning, Ze-huan Zheng, Shengke Zhu, Ying Chen, Huanyang Chen* and Jin-hui Chen*,  Opto-Electron. Sci., 1, 220012 (2022).